Generalized Guerra's interpolation schemes for dense associative neural networks (1911.12707v2)
Abstract: In this work we develop analytical techniques to investigate a broad class of associative neural networks set in the high-storage regime. These techniques translate the original statistical-mechanical problem into an analytical-mechanical one which implies solving a set of partial differential equations, rather than tackling the canonical probabilistic route. We test the method on the classical Hopfield model - where the cost function includes only two-body interactions (i.e., quadratic terms) - and on the "relativistic" Hopfield model - where the (expansion of the) cost function includes p-body (i.e., of degree p) contributions. Under the replica symmetric assumption, we paint the phase diagrams of these models by obtaining the explicit expression of their free energy as a function of the model parameters (i.e., noise level and memory storage). Further, since for non-pairwise models ergodicity breaking is non necessarily a critical phenomenon, we develop a fluctuation analysis and find that criticality is preserved in the relativistic model.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.