2000 character limit reached
Farley-Sabalka's Morse-theory model and the higher topological complexity of ordered configuration spaces on trees
Published 28 Nov 2019 in math.AT | (1911.12522v1)
Abstract: Using the ordered analogue of Farley-Sabalka's discrete gradient field on the configuration space of a graph, we unravel a levelwise behavior of the generators of the pure braid group on a tree. This allows us to generalize Farber's equivariant description of the homotopy type of the configuration space on a tree on two particles. The results are applied to the calculation of all the higher topological complexities of ordered configuration spaces on trees on any number of particles.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.