Some Applications of Group Theoretic Rips Constructions to the Classification of von Neumann Algebras (1911.11729v2)
Abstract: In this paper we study various von Neumann algebraic rigidity aspects for the property (T) groups that arise via the Rips construction developed by Belegradek and Osin in geometric group theory \cite{BO06}. Specifically, developing a new interplay between Popa's deformation/rigidity theory \cite{Po07} and geometric group theory methods we show that several algebraic features of these groups are completely recognizable from the von Neumann algebraic structure. In particular, we obtain new infinite families of pairwise non-isomorphic property (T) group factors thereby providing positive evidence towards Connes' Rigidity Conjecture. In addition, we use the Rips construction to build examples of property (T) II$_1$ factors which posses maximal von Neumann subalgebras without property (T) which answers a question raised in an earlier version of \cite{JS19} by Y. Jiang and A. Skalski.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.