Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Some Applications of Group Theoretic Rips Constructions to the Classification of von Neumann Algebras (1911.11729v2)

Published 26 Nov 2019 in math.OA and math.GR

Abstract: In this paper we study various von Neumann algebraic rigidity aspects for the property (T) groups that arise via the Rips construction developed by Belegradek and Osin in geometric group theory \cite{BO06}. Specifically, developing a new interplay between Popa's deformation/rigidity theory \cite{Po07} and geometric group theory methods we show that several algebraic features of these groups are completely recognizable from the von Neumann algebraic structure. In particular, we obtain new infinite families of pairwise non-isomorphic property (T) group factors thereby providing positive evidence towards Connes' Rigidity Conjecture. In addition, we use the Rips construction to build examples of property (T) II$_1$ factors which posses maximal von Neumann subalgebras without property (T) which answers a question raised in an earlier version of \cite{JS19} by Y. Jiang and A. Skalski.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.