Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Emergent Structures and Lifetime Structure Evolution in Artificial Neural Networks (1911.11691v1)

Published 26 Nov 2019 in cs.LG, cs.NE, q-bio.NC, and stat.ML

Abstract: Motivated by the flexibility of biological neural networks whose connectivity structure changes significantly during their lifetime, we introduce the Unstructured Recursive Network (URN) and demonstrate that it can exhibit similar flexibility during training via gradient descent. We show empirically that many of the different neural network structures commonly used in practice today (including fully connected, locally connected and residual networks of different depths and widths) can emerge dynamically from the same URN. These different structures can be derived using gradient descent on a single general loss function where the structure of the data and the relative strengths of various regulator terms determine the structure of the emergent network. We show that this loss function and the regulators arise naturally when considering the symmetries of the network as well as the geometric properties of the input data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.