Papers
Topics
Authors
Recent
2000 character limit reached

Fourier restriction above rectangles

Published 26 Nov 2019 in math.CA and math.AP | (1911.11600v1)

Abstract: In this article, we study the problem of obtaining Lebesgue space inequalities for the Fourier restriction operator associated to rectangular pieces of the paraboloid and perturbations thereof. We state a conjecture for the dependence of the operator norms in these inequalities on the sidelengths of the rectangles, prove that this conjecture follows from (a slight reformulation of the) restriction conjecture for elliptic hypersurfaces, and prove that, if valid, the conjecture is essentially sharp. Such questions arise naturally in the study of restriction inequalities for degenerate hypersurfaces; we demonstrate this connection by using our positive results to prove new restriction inequalities for a class of hypersurfaces having some additive structure.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.