Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Effective Decoding in Graph Auto-Encoder using Triadic Closure (1911.11322v1)

Published 26 Nov 2019 in cs.LG and stat.ML

Abstract: The (variational) graph auto-encoder and its variants have been popularly used for representation learning on graph-structured data. While the encoder is often a powerful graph convolutional network, the decoder reconstructs the graph structure by only considering two nodes at a time, thus ignoring possible interactions among edges. On the other hand, structured prediction, which considers the whole graph simultaneously, is computationally expensive. In this paper, we utilize the well-known triadic closure property which is exhibited in many real-world networks. We propose the triad decoder, which considers and predicts the three edges involved in a local triad together. The triad decoder can be readily used in any graph-based auto-encoder. In particular, we incorporate this to the (variational) graph auto-encoder. Experiments on link prediction, node clustering and graph generation show that the use of triads leads to more accurate prediction, clustering and better preservation of the graph characteristics.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.