Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Identifying Model Weakness with Adversarial Examiner (1911.11230v1)

Published 25 Nov 2019 in cs.CV and cs.LG

Abstract: Machine learning models are usually evaluated according to the average case performance on the test set. However, this is not always ideal, because in some sensitive domains (e.g. autonomous driving), it is the worst case performance that matters more. In this paper, we are interested in systematic exploration of the input data space to identify the weakness of the model to be evaluated. We propose to use an adversarial examiner in the testing stage. Different from the existing strategy to always give the same (distribution of) test data, the adversarial examiner will dynamically select the next test data to hand out based on the testing history so far, with the goal being to undermine the model's performance. This sequence of test data not only helps us understand the current model, but also serves as constructive feedback to help improve the model in the next iteration. We conduct experiments on ShapeNet object classification. We show that our adversarial examiner can successfully put more emphasis on the weakness of the model, preventing performance estimates from being overly optimistic.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.