Feynman categories and Representation Theory
Abstract: We give a presentation of Feynman categories from a representation--theoretical viewpoint. Feynman categories are a special type of monoidal categories and their representations are monoidal functors. They can be viewed as a far reaching generalization of groups, algebras and modules. Taking a new algebraic approach, we provide more examples and more details for several key constructions. This leads to new applications and results. The text is intended to be a self--contained basis for a crossover of more elevated constructions and results in the fields of representation theory and Feynman categories, whose applications so far include number theory, geometry, topology and physics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.