2000 character limit reached
PAG-Net: Progressive Attention Guided Depth Super-resolution Network (1911.09878v1)
Published 22 Nov 2019 in cs.CV
Abstract: In this paper, we propose a novel method for the challenging problem of guided depth map super-resolution, called PAGNet. It is based on residual dense networks and involves the attention mechanism to suppress the texture copying problem arises due to improper guidance by RGB images. The attention module mainly involves providing the spatial attention to guidance image based on the depth features. We evaluate the proposed trained models on test dataset and provide comparisons with the state-of-the-art depth super-resolution methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.