Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing the Extraction of Interpretable Information for Ischemic Stroke Imaging from Deep Neural Networks (1911.08136v2)

Published 19 Nov 2019 in eess.IV, cs.LG, and q-bio.QM

Abstract: We implement a visual interpretability method Layer-wise Relevance Propagation (LRP) on top of 3D U-Net trained to perform lesion segmentation on the small dataset of multi-modal images provided by ISLES 2017 competition. We demonstrate that LRP modifications could provide more sensible visual explanations to an otherwise highly noise-skewed saliency map. We also link amplitude of modified signals to useful information content. High amplitude localized signals appear to constitute the noise that undermines the interpretability capacity of LRP. Furthermore, mathematical framework for possible analysis of function approximation is developed by analogy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.