2000 character limit reached
Comments on the Du-Kakade-Wang-Yang Lower Bounds (1911.07910v1)
Published 18 Nov 2019 in cs.LG and stat.ML
Abstract: Du, Kakade, Wang, and Yang recently established intriguing lower bounds on sample complexity, which suggest that reinforcement learning with a misspecified representation is intractable. Another line of work, which centers around a statistic called the eluder dimension, establishes tractability of problems similar to those considered in the Du-Kakade-Wang-Yang paper. We compare these results and reconcile interpretations.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.