Taming Reasoning in Temporal Probabilistic Relational Models
Abstract: Evidence often grounds temporal probabilistic relational models over time, which makes reasoning infeasible. To counteract groundings over time and to keep reasoning polynomial by restoring a lifted representation, we present temporal approximate merging (TAMe), which incorporates (i) clustering for grouping submodels as well as (ii) statistical significance checks to test the fitness of the clustering outcome. In exchange for faster runtimes, TAMe introduces a bounded error that becomes negligible over time. Empirical results show that TAMe significantly improves the runtime performance of inference, while keeping errors small.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.