Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Resistance distance in directed cactus graphs (1911.05951v3)

Published 14 Nov 2019 in math.CO and math.FA

Abstract: Let $G=(V,E)$ be a strongly connected and balanced digraph with vertex set $V={1,\dotsc,n}$. The classical distance $d_{ij}$ between any two vertices $i$ and $j$ in $G$ is the minimum length of all the directed paths joining $i$ and $j$. The resistance distance (or, simply the resistance) between any two vertices $i$ and $j$ in $V$ is defined by $r_{ij}:=l_{ii}{\dag}+l_{jj}{\dag}-2l_{ij}{\dag}$, where $l_{pq}{\dagger}$ is the $(p,q){\rm th}$ entry of the Moore-Penrose inverse of $L$ which is the Laplacian matrix of $G$. In practice, the resistance $r_{ij}$ is more significant than the classical distance. One reason for this is, numerical examples show that the resistance distance between $i$ and $j$ is always less than or equal to the classical distance, i.e. $r_{ij} \leq d_{ij}$. However, no proof for this inequality is known. In this paper, we show that this inequality holds for all directed cactus graphs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.