Papers
Topics
Authors
Recent
2000 character limit reached

Monopole operators and their symmetries in QED3-Gross-Neveu models

Published 13 Nov 2019 in cond-mat.str-el, cond-mat.stat-mech, and hep-th | (1911.05802v1)

Abstract: Monopole operators are topological disorder operators in 2+1 dimensional compact gauge field theories appearing notably in quantum magnets with fractionalized excitations. For example, their proliferation in a spin-1/2 kagome Heisenberg antiferromagnet triggers a quantum phase transition from a Dirac spin liquid phase to an antiferromagnet. The quantum critical point (QCP) for this transition is described by a conformal field theory: Compact quantum electrodynamics (QED3) with a fermionic self-interaction, a type of QED3-Gross-Neveu model. We obtain the scaling dimensions of monopole operators at the QCP using a state-operator correspondence and a large-N expansion, where 2N is the number of fermion flavors. We characterize the hierarchy of monopole operators at this SU(2) x SU(N) symmetric QCP.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.