Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

TCT: A Cross-supervised Learning Method for Multimodal Sequence Representation (1911.05186v1)

Published 23 Oct 2019 in cs.CV, cs.CL, cs.LG, cs.SD, eess.AS, and stat.ML

Abstract: Multimodalities provide promising performance than unimodality in most tasks. However, learning the semantic of the representations from multimodalities efficiently is extremely challenging. To tackle this, we propose the Transformer based Cross-modal Translator (TCT) to learn unimodal sequence representations by translating from other related multimodal sequences on a supervised learning method. Combined TCT with Multimodal Transformer Network (MTN), we evaluate MTN-TCT on the video-grounded dialogue which uses multimodality. The proposed method reports new state-of-the-art performance on video-grounded dialogue which indicates representations learned by TCT are more semantics compared to directly use unimodality.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.