Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

TMT: A Transformer-based Modal Translator for Improving Multimodal Sequence Representations in Audio Visual Scene-aware Dialog (2010.10839v1)

Published 21 Oct 2020 in cs.CL

Abstract: Audio Visual Scene-aware Dialog (AVSD) is a task to generate responses when discussing about a given video. The previous state-of-the-art model shows superior performance for this task using Transformer-based architecture. However, there remain some limitations in learning better representation of modalities. Inspired by Neural Machine Translation (NMT), we propose the Transformer-based Modal Translator (TMT) to learn the representations of the source modal sequence by translating the source modal sequence to the related target modal sequence in a supervised manner. Based on Multimodal Transformer Networks (MTN), we apply TMT to video and dialog, proposing MTN-TMT for the video-grounded dialog system. On the AVSD track of the Dialog System Technology Challenge 7, MTN-TMT outperforms the MTN and other submission models in both Video and Text task and Text Only task. Compared with MTN, MTN-TMT improves all metrics, especially, achieving relative improvement up to 14.1% on CIDEr. Index Terms: multimodal learning, audio-visual scene-aware dialog, neural machine translation, multi-task learning

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Wubo Li (8 papers)
  2. Dongwei Jiang (16 papers)
  3. Wei Zou (62 papers)
  4. Xiangang Li (46 papers)
Citations (5)