Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Power of Two Choices for Random Walks

Published 12 Nov 2019 in cs.DM, math.CO, and math.PR | (1911.05170v2)

Abstract: We apply the power-of-two-choices paradigm to a random walk on a graph: rather than moving to a uniform random neighbour at each step, a controller is allowed to choose from two independent uniform random neighbours. We prove that this allows the controller to significantly accelerate the hitting and cover times in several natural graph classes. In particular, we show that the cover time becomes linear in the number $n$ of vertices on discrete tori and bounded degree trees, of order $\mathcal{O}(n \log \log n)$ on bounded degree expanders, and of order $\mathcal{O}(n (\log \log n)2)$ on the Erd\H{o}s-R\'{e}nyi random graph in a certain sparsely connected regime. We also consider the algorithmic question of computing an optimal strategy, and prove a dichotomy in efficiency between computing strategies for hitting and cover times.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.