Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Effects of data ambiguity and cognitive biases on the interpretability of machine learning models in humanitarian decision making (1911.04787v1)

Published 12 Nov 2019 in cs.LG, cs.HC, and stat.ML

Abstract: The effectiveness of machine learning algorithms depends on the quality and amount of data and the operationalization and interpretation by the human analyst. In humanitarian response, data is often lacking or overburdening, thus ambiguous, and the time-scarce, volatile, insecure environments of humanitarian activities are likely to inflict cognitive biases. This paper proposes to research the effects of data ambiguity and cognitive biases on the interpretability of machine learning algorithms in humanitarian decision making.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.