Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Simple Differentiable Programming Language (1911.04523v4)

Published 11 Nov 2019 in cs.PL and cs.LG

Abstract: Automatic differentiation plays a prominent role in scientific computing and in modern machine learning, often in the context of powerful programming systems. The relation of the various embodiments of automatic differentiation to the mathematical notion of derivative is not always entirely clear---discrepancies can arise, sometimes inadvertently. In order to study automatic differentiation in such programming contexts, we define a small but expressive programming language that includes a construct for reverse-mode differentiation. We give operational and denotational semantics for this language. The operational semantics employs popular implementation techniques, while the denotational semantics employs notions of differentiation familiar from real analysis. We establish that these semantics coincide.

Citations (61)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.