Generalized Transformation-based Gradient (1911.02681v3)
Abstract: The reparameterization trick has become one of the most useful tools in the field of variational inference. However, the reparameterization trick is based on the standardization transformation which restricts the scope of application of this method to distributions that have tractable inverse cumulative distribution functions or are expressible as deterministic transformations of such distributions. In this paper, we generalized the reparameterization trick by allowing a general transformation. We discover that the proposed model is a special case of control variate indicating that the proposed model can combine the advantages of CV and generalized reparameterization.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.