Papers
Topics
Authors
Recent
Search
2000 character limit reached

Collective optimization for variational quantum eigensolvers

Published 30 Oct 2019 in quant-ph | (1910.14030v1)

Abstract: Variational quantum eigensolver (VQE) optimizes parameterized eigenstates of a Hamiltonian on a quantum processor by updating parameters with a classical computer. Such a hybrid quantum-classical optimization serves as a practical way to leverage up classical algorithms to exploit the power of near-term quantum computing. Here, we develop a hybrid algorithm for VQE, emphasizing the classical side, that can solve a group of related Hamiltonians simultaneously. The algorithm incorporates a snake algorithm into many VQE tasks to collectively optimize variational parameters of different Hamiltonians. Such so-called collective VQEs~(cVQEs) is applied for solving molecules with varied bond length, which is a standard problem in quantum chemistry. Numeral simulations show that cVQE is not only more efficient in convergence, but also trends to avoid single VQE task to be trapped in local minimums. The collective optimization utilizes intrinsic relations between related tasks and may inspire advanced hybrid quantum-classical algorithms for solving practical problems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.