Papers
Topics
Authors
Recent
Search
2000 character limit reached

On the extreme non-Arens regularity of Banach algebras

Published 30 Oct 2019 in math.FA and math.OA | (1910.14027v3)

Abstract: As is well-know, on an Arens regular Banach algebra all continuous functionals are weakly almost periodic. In this paper we show that $\ell1$-bases which approximate upper and lower triangles of products of elements in the algebra produce large sets of functionals that are not weakly almost periodic. This leads to criteria for extreme non-Arens regularity of Banach algebras in the sense of Granirer. We find in particular that bounded approximate identities (bai's) and bounded nets converging to invariance (TI-nets) both fall into this approach, suggesting that this is indeed the main tool behind most known constructions of non-Arens regular algebras. These criteria can be applied to the main algebras in harmonic analysis such as the group algebra, the measure algebra, the semigroup algebra (with certain weights) and the Fourier algebra. In this paper, we apply our criteria to the Lebesgue-Fourier algebra, the 1-Segal Fourier algebra and the Fig`a-Talamanca Herz algebra.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.