2000 character limit reached
Neural Density Estimation and Likelihood-free Inference (1910.13233v1)
Published 29 Oct 2019 in stat.ML and cs.LG
Abstract: I consider two problems in machine learning and statistics: the problem of estimating the joint probability density of a collection of random variables, known as density estimation, and the problem of inferring model parameters when their likelihood is intractable, known as likelihood-free inference. The contribution of the thesis is a set of new methods for addressing these problems that are based on recent advances in neural networks and deep learning.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.