Papers
Topics
Authors
Recent
2000 character limit reached

Neural Density Estimation and Likelihood-free Inference (1910.13233v1)

Published 29 Oct 2019 in stat.ML and cs.LG

Abstract: I consider two problems in machine learning and statistics: the problem of estimating the joint probability density of a collection of random variables, known as density estimation, and the problem of inferring model parameters when their likelihood is intractable, known as likelihood-free inference. The contribution of the thesis is a set of new methods for addressing these problems that are based on recent advances in neural networks and deep learning.

Citations (39)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.