Critical branching processes in random environment and Cauchy domain of attraction (1910.13190v2)
Abstract: We are interested in the survival probability of a population modeled by a critical branching process in an i.i.d. random environment. We assume that the random walk associated with the branching process is oscillating and satisfies a Spitzer condition $\mathbf{P}(S_{n}>0)\rightarrow \rho ,\ n\rightarrow \infty $, which is a standard condition in fluctuation theory of random walks. Unlike the previously studied case $\rho \in (0,1)$, we investigate the case where the offspring distribution is in the domain of attraction of a stable law with parameter $1$, which implies that $\rho =0$ or $1$. We find the asymptotic behaviour of the survival probability of the population in these two cases.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.