Strong positivity for quantum theta bases of quantum cluster algebras (1910.12915v3)
Abstract: We construct "quantum theta bases," extending the set of quantum cluster monomials, for various versions of skew-symmetric quantum cluster algebras. These bases consist precisely of the indecomposable universally positive elements of the algebras they generate, and the structure constants for their multiplication are Laurent polynomials in the quantum parameter with non-negative integer coefficients, proving the quantum strong cluster positivity conjecture for these algebras. The classical limits recover the theta bases considered by Gross-Hacking-Keel-Kontsevich. Our approach combines the scattering diagram techniques used in loc. cit. with the Donaldson-Thomas theory of quivers.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.