Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 200 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 44 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Adaptive Sampling for Estimating Multiple Probability Distributions (1910.12406v2)

Published 28 Oct 2019 in stat.ML and cs.LG

Abstract: We consider the problem of allocating samples to a finite set of discrete distributions in order to learn them uniformly well in terms of four common distance measures: $\ell_22$, $\ell_1$, $f$-divergence, and separation distance. To present a unified treatment of these distances, we first propose a general optimistic tracking algorithm and analyze its sample allocation performance w.r.t.~an oracle. We then instantiate this algorithm for the four distance measures and derive bounds on the regret of their resulting allocation schemes. We verify our theoretical findings through some experiments. Finally, we show that the techniques developed in the paper can be easily extended to the related setting of minimizing the average error (in terms of the four distances) in learning a set of distributions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.