Papers
Topics
Authors
Recent
2000 character limit reached

On the Efficiency of the Neuro-Fuzzy Classifier for User Knowledge Modeling Systems (1910.12025v1)

Published 26 Oct 2019 in cs.AI and cs.LG

Abstract: User knowledge modeling systems are used as the most effective technology for grabbing new user's attention. Moreover, the quality of service (QOS) is increased by these intelligent services. This paper proposes two user knowledge classifiers based on artificial neural networks used as one of the influential parts of knowledge modeling systems. We employed multi-layer perceptron (MLP) and adaptive neural fuzzy inference system (ANFIS) as the classifiers. Moreover, we used real data contains the user's degree of study time, repetition number, their performance in exam, as well as the learning percentage, as our classifier's inputs. Compared with well-known methods like KNN and Bayesian classifiers used in other research with the same data sets, our experiments present better performance. Although, the number of samples in the train set is not large enough, the performance of the neuro-fuzzy classifier in the test set is 98.6% which is the best result in comparison with others. However, the comparison of MLP toward the ANFIS results presents performance reduction, although the MLP performance is more efficient than other methods like Bayesian and KNN. As our goal is evaluating and reporting the efficiency of a neuro-fuzzy classifier for user knowledge modeling systems, we utilized many different evaluation metrics such as Receiver Operating Characteristic and the Area Under its Curve, Total Accuracy, and Kappa statistics.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.