Papers
Topics
Authors
Recent
2000 character limit reached

Learning Priors in High-frequency Domain for Inverse Imaging Reconstruction (1910.11148v1)

Published 23 Oct 2019 in eess.IV, cs.CV, cs.LG, and stat.ML

Abstract: Ill-posed inverse problems in imaging remain an active research topic in several decades, with new approaches constantly emerging. Recognizing that the popular dictionary learning and convolutional sparse coding are both essentially modeling the high-frequency component of an image, which convey most of the semantic information such as texture details, in this work we propose a novel multi-profile high-frequency transform-guided denoising autoencoder as prior (HF-DAEP). To achieve this goal, we first extract a set of multi-profile high-frequency components via a specific transformation and add the artificial Gaussian noise to these high-frequency components as training samples. Then, as the high-frequency prior information is learned, we incorporate it into classical iterative reconstruction process by proximal gradient descent technique. Preliminary results on highly under-sampled magnetic resonance imaging and sparse-view computed tomography reconstruction demonstrate that the proposed method can efficiently reconstruct feature details and present advantages over state-of-the-arts.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.