Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Empirical relations for gravitational-wave asteroseismology of binary neutron star mergers (1910.10856v1)

Published 24 Oct 2019 in gr-qc and astro-ph.HE

Abstract: We construct new, multivariate empirical relations for measuring neutron star radii and tidal deformabilities from the dominant gravitational wave frequency in the post-merger phase of binary neutron star mergers. The relations determine neutron star radii and tidal deformabilities for specific neutron star masses with consistent accuracy and depend only on two observables: the post-merger peak frequency $f_{\rm peak}$ and the chirp mass $M_{\rm chirp}$. The former could be measured with good accuracy from gravitational waves emitted in the post-merger phase using next-generation detectors, whereas the latter is already obtained with good accuracy from the inspiral phase with present-day detectors. Our main data set consists of a gravitational wave catalogue obtained with CFC/SPH simulations. We also extract the $f_{\rm peak}$ frequency from the publicly available CoRe data set, obtained through grid-based GRHD simulations and find good agreement between the extracted frequencies of the two data sets. As a result, we can construct empirical relations for the combined data sets. Furthermore, we investigate empirical relations for two secondary peaks, $f_{2-0}$ and $f_{\rm spiral}$, and show that these relations are distinct in the whole parameter space, in agreement with a previously introduced spectral classification scheme. Finally, we show that the spectral classification scheme can be reproduced using machine-learning techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.