Papers
Topics
Authors
Recent
2000 character limit reached

Sato-Tate Equidistribution for Families of Automorphic Representations through the Stable Trace Formula

Published 23 Oct 2019 in math.NT and math.RT | (1910.10800v2)

Abstract: In arXiv:1208.1945, Shin and Templier proved certain equidistribution bounds on local components of certain families of automorphic representations. We extend their weight-aspect results to families of automorphic representations where the Archimedean component is restricted to a single discrete-series representation instead of an entire $L$-packet. We do this by using a so-called "hyperendoscopy" version of the stable trace formula developed by Ferrari. The main technical difficulties are defining a version of hyperendoscopy that works for groups without simply connected derived subgroup and bounding the values of transfers of unramified functions. We also present an extension of Arthur's simple trace formula for test functions with Euler-Poincar\'e component at infinity to non-cuspidal groups since it does not seem to appear elsewhere in the literature.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.