Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Trojan Attacks on Wireless Signal Classification with Adversarial Machine Learning (1910.10766v1)

Published 23 Oct 2019 in cs.NI, cs.CR, cs.LG, and eess.SP

Abstract: We present a Trojan (backdoor or trapdoor) attack that targets deep learning applications in wireless communications. A deep learning classifier is considered to classify wireless signals using raw (I/Q) samples as features and modulation types as labels. An adversary slightly manipulates training data by inserting Trojans (i.e., triggers) to only few training data samples by modifying their phases and changing the labels of these samples to a target label. This poisoned training data is used to train the deep learning classifier. In test (inference) time, an adversary transmits signals with the same phase shift that was added as a trigger during training. While the receiver can accurately classify clean (unpoisoned) signals without triggers, it cannot reliably classify signals poisoned with triggers. This stealth attack remains hidden until activated by poisoned inputs (Trojans) to bypass a signal classifier (e.g., for authentication). We show that this attack is successful over different channel conditions and cannot be mitigated by simply preprocessing the training and test data with random phase variations. To detect this attack, activation based outlier detection is considered with statistical as well as clustering techniques. We show that the latter one can detect Trojan attacks even if few samples are poisoned.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.