Papers
Topics
Authors
Recent
2000 character limit reached

Fully Quantized Transformer for Machine Translation (1910.10485v3)

Published 17 Oct 2019 in cs.CL, cs.LG, and stat.ML

Abstract: State-of-the-art neural machine translation methods employ massive amounts of parameters. Drastically reducing computational costs of such methods without affecting performance has been up to this point unsuccessful. To this end, we propose FullyQT: an all-inclusive quantization strategy for the Transformer. To the best of our knowledge, we are the first to show that it is possible to avoid any loss in translation quality with a fully quantized Transformer. Indeed, compared to full-precision, our 8-bit models score greater or equal BLEU on most tasks. Comparing ourselves to all previously proposed methods, we achieve state-of-the-art quantization results.

Citations (64)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.