Papers
Topics
Authors
Recent
Search
2000 character limit reached

Iterative Distance-Aware Similarity Matrix Convolution with Mutual-Supervised Point Elimination for Efficient Point Cloud Registration

Published 23 Oct 2019 in cs.CV | (1910.10328v3)

Abstract: In this paper, we propose a novel learning-based pipeline for partially overlapping 3D point cloud registration. The proposed model includes an iterative distance-aware similarity matrix convolution module to incorporate information from both the feature and Euclidean space into the pairwise point matching process. These convolution layers learn to match points based on joint information of the entire geometric features and Euclidean offset for each point pair, overcoming the disadvantage of matching by simply taking the inner product of feature vectors. Furthermore, a two-stage learnable point elimination technique is presented to improve computational efficiency and reduce false positive correspondence pairs. A novel mutual-supervision loss is proposed to train the model without extra annotations of keypoints. The pipeline can be easily integrated with both traditional (e.g. FPFH) and learning-based features. Experiments on partially overlapping and noisy point cloud registration show that our method outperforms the current state-of-the-art, while being more computationally efficient. Code is publicly available at https://github.com/jiahaowork/idam.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.