Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Pairing and duality of algebraic quantum groupoids (1910.09897v2)

Published 22 Oct 2019 in math.RA

Abstract: Algebraic quantum groupoids have been developed by two of the authors (AVD and SHW) of this note in a series of papers. Regular multiplier Hopf algebroids are obtained also by two authors (TT and AVD). Integral theory and duality for those have been studied by one author here (TT). Finally, again two authors of us (TT and AVD) have investigated the relation between weak multiplier Hopf algebras and multiplier Hopf algebroids. In the paper 'Weak multiplier Hopf algebras III. Integrals and duality' (by AVD and SHW), one of the main results is that the dual of an algebraic quantum groupoid, admits a dual of the same type. In the paper 'On duality of algebraic quantum groupoids' (by TT), a result of the same nature is obtained for regular multiplier Hopf algebroids with a single faithful integral. The duality of regular weak multiplier Hopf algebras with a single integral can be obtained from the duality of regular multiplier Hopf algebroids. That is however not the obvious way to obtain this result. It is more difficult and less natural than the direct way. We will discuss this statement further in the paper. Nevertheless, it is interesting to investigate the relation between the two approaches to duality in greater detail. This is what we do in this paper. We build further on the intimate relation between weak multiplier Hopf algebras and multiplier Hopf algebroids. We now add the presence of integrals. That seems to be done best in a framework of dual pairs. It is in fact more general than the duality of these objects coming with integrals.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube