Local rigidity of Einstein 4-manifolds satisfying a chiral curvature condition (1910.09790v2)
Abstract: Let (M,g) be a compact oriented Einstein 4-manifold. Write R-plus for the part of the curvature operator of g which acts on self-dual 2-forms. We prove that if R-plus is negative definite then g is locally rigid: any other Einstein metric near to g is isometric to it. This is a chiral generalisation of Koiso's Theorem, which proves local rigidity of Einstein metrics with negative sectional curvatures. Our hypotheses are roughly one half of Koiso's. Our proof uses a new variational description of Einstein 4-manifolds, as critical points of the so-called poure connection action S. The key step in the proof is that when R-plus is negative definite, the Hessian of S is strictly positive modulo gauge.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.