Papers
Topics
Authors
Recent
Search
2000 character limit reached

Obstructions to semiorthogonal decompositions for singular threefolds I: K-theory

Published 21 Oct 2019 in math.AG, math.KT, and math.RT | (1910.09531v3)

Abstract: We investigate necessary conditions for Gorenstein projective varieties to admit semiorthogonal decompositions introduced by Kawamata, with main emphasis on threefolds with isolated compound $A_n$ singularities. We introduce obstructions coming from Algebraic $\mathrm{K}$-theory and translate them into the concept of maximal nonfactoriality. Using these obstructions we show that many classes of nodal threefolds do not admit Kawamata type semiorthogonal decompositions. These include nodal hypersurfaces and double solids, with the exception of a nodal quadric, and del Pezzo threefolds of degrees $1 \le d \le 4$ with maximal class group rank. We also investigate when does a blow up of a smooth threefold in a singular curve admit a Kawamata type semiorthogonal decomposition and we give a complete answer to this question when the curve is nodal and has only rational components.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.