Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On Critical nets in $\mathbb{R}^k$ (1910.09002v1)

Published 20 Oct 2019 in math.DG and math.CO

Abstract: Critical nets in $\mathbb{R}k$ (sometimes called geodesic nets) are embedded graph with the property that their embedding is a critical point of the total (edge) length functional and under the constraint that certain 1-valent vertices (leaves) have a fixed position. In contrast to what happens on generic manifolds, we show that, if n is the number of 1-valent vertices, the total length of the edges not incident with a 1-valent vertex is bounded by rn (where r is the outer radius), the degree of any vertex is bounded by n and that the number of edges (and hence the number of vertices) is bounded by nl where l is related to the combinatorial diameter of the graph.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.