Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tracking-Assisted Segmentation of Biological Cells (1910.08735v1)

Published 19 Oct 2019 in eess.IV, cs.CV, and q-bio.QM

Abstract: U-Net and its variants have been demonstrated to work sufficiently well in biological cell tracking and segmentation. However, these methods still suffer in the presence of complex processes such as collision of cells, mitosis and apoptosis. In this paper, we augment U-Net with Siamese matching-based tracking and propose to track individual nuclei over time. By modelling the behavioural pattern of the cells, we achieve improved segmentation and tracking performances through a re-segmentation procedure. Our preliminary investigations on the Fluo-N2DH-SIM+ and Fluo-N2DH-GOWT1 datasets demonstrate that absolute improvements of up to 3.8 % and 3.4% can be obtained in segmentation and tracking accuracy, respectively.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.