Papers
Topics
Authors
Recent
2000 character limit reached

CreditPrint: Credit Investigation via Geographic Footprints by Deep Learning

Published 19 Oct 2019 in cs.LG and cs.CY | (1910.08734v1)

Abstract: Credit investigation is critical for financial services. Whereas, traditional methods are often restricted as the employed data hardly provide sufficient, timely and reliable information. With the prevalence of smart mobile devices, peoples' geographic footprints can be automatically and constantly collected nowadays, which provides an unprecedented opportunity for credit investigations. Inspired by the observation that locations are somehow related to peoples' credit level, this research aims to enhance credit investigation with users' geographic footprints. To this end, a two-stage credit investigation framework is designed, namely CreditPrint. In the first stage, CreditPrint explores regions' credit characteristics and learns a credit-aware embedding for each region by considering both each region's individual characteristics and cross-region relationships with graph convolutional networks. In the second stage, a hierarchical attention-based credit assessment network is proposed to aggregate the credit indications from a user's multiple trajectories covering diverse regions. The results on real-life user mobility datasets show that CreditPrint can increase the credit investigation accuracy by up to 10% compared to baseline methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.