Papers
Topics
Authors
Recent
2000 character limit reached

Multi-level conformal clustering: A distribution-free technique for clustering and anomaly detection (1910.08105v2)

Published 17 Oct 2019 in stat.ML, cs.LG, and stat.ME

Abstract: In this work we present a clustering technique called \textit{multi-level conformal clustering (MLCC)}. The technique is hierarchical in nature because it can be performed at multiple significance levels which yields greater insight into the data than performing it at just one level. We describe the theoretical underpinnings of MLCC, compare and contrast it with the hierarchical clustering algorithm, and then apply it to real world datasets to assess its performance. There are several advantages to using MLCC over more classical clustering techniques: Once a significance level has been set, MLCC is able to automatically select the number of clusters. Furthermore, thanks to the conformal prediction framework the resulting clustering model has a clear statistical meaning without any assumptions about the distribution of the data. This statistical robustness also allows us to perform clustering and anomaly detection simultaneously. Moreover, due to the flexibility of the conformal prediction framework, our algorithm can be used on top of many other machine learning algorithms.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.