Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Residual Switching Network for Portfolio Optimization (1910.07564v1)

Published 16 Oct 2019 in q-fin.ST and q-fin.PM

Abstract: This paper studies deep learning methodologies for portfolio optimization in the US equities market. We present a novel residual switching network that can automatically sense changes in market regimes and switch between momentum and reversal predictors accordingly. The residual switching network architecture combines two separate residual networks (ResNets), namely a switching module that learns stock market conditions, and the main module that learns momentum and reversal predictors. We demonstrate that over-fitting noisy financial data can be controlled with stacked residual blocks and further incorporating the attention mechanism can enhance powerful predictive properties. Over the period 2008 to H12017, the residual switching network (Switching-ResNet) strategy verified superior out-of-sample performance with an average annual Sharpe ratio of 2.22, compared with an average annual Sharpe ratio of 0.81 for the ANN-based strategy and 0.69 for the linear model.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.