Electro-Magnetic Side-Channel Attack Through Learned Denoising and Classification (1910.07201v1)
Abstract: This paper proposes an upgraded electro-magnetic side-channel attack that automatically reconstructs the intercepted data. A novel system is introduced, running in parallel with leakage signal interception and catching compromising data in real-time. Based on deep learning and character recognition the proposed system retrieves more than 57% of characters present in intercepted signals regardless of signal type: analog or digital. The approach is also extended to a protection system that triggers an alarm if the system is compromised, demonstrating a success rate over 95%. Based on software-defined radio and graphics processing unit architectures, this solution can be easily deployed onto existing information systems where information shall be kept secret.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.