Papers
Topics
Authors
Recent
Search
2000 character limit reached

Optimal ratcheting of dividends in insurance

Published 10 Oct 2019 in q-fin.PM and math.PR | (1910.06910v2)

Abstract: We address a long-standing open problem in risk theory, namely the optimal strategy to pay out dividends from an insurance surplus process, if the dividend rate can never be decreased. The optimality criterion here is to maximize the expected value of the aggregate discounted dividend payments up to the time of ruin. In the framework of the classical Cram\'{e}r-Lundberg risk model, we solve the corresponding two-dimensional optimal control problem and show that the value function is the unique viscosity solution of the corresponding Hamilton-Jacobi-Bellman equation. We also show that the value function can be approximated arbitrarily closely by ratcheting strategies with only a finite number of possible dividend rates and identify the free boundary and the optimal strategies in several concrete examples. These implementations illustrate that the restriction of ratcheting does not lead to a large efficiency loss when compared to the classical un-constrained optimal dividend strategy.

Citations (17)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.