Papers
Topics
Authors
Recent
2000 character limit reached

Superexponential stabilizability of evolution equations of parabolic type via bilinear control (1910.06802v1)

Published 14 Oct 2019 in math.OC and math.AP

Abstract: We prove rapid stabilizability to the ground state solution for a class of abstract parabolic equations of the form \begin{equation*} u'(t)+Au(t)+p(t)Bu(t)=0,\qquad t\geq0 \end{equation*} where the operator $-A$ is a self-adjoint accretive operator on a Hilbert space and $p(\cdot)$ is the control function. The proof is based on a linearization argument. We prove that the linearized system is exacly controllable and we apply the moment method to build a control $p(\cdot)$ that steers the solution to the ground state in finite time. Finally, we use such a control to bring the solution of the nonlinear equation arbitrarily close to the ground state solution with doubly exponential rate of convergence. We give several applications of our result to different kinds of parabolic equations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.