Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Statistical Performance of Matching-Adjusted Indirect Comparisons (1910.06449v2)

Published 14 Oct 2019 in stat.AP and stat.ME

Abstract: Indirect comparisons of treatment-specific outcomes across separate studies often inform decision-making in the absence of head-to-head randomized comparisons. Differences in baseline characteristics between study populations may introduce confounding bias in such comparisons. Matching-adjusted indirect comparison (MAIC) (Signorovitch et al., 2010) has been used to adjust for differences in observed baseline covariates when the individual patient-level data (IPD) are available for only one study and aggregate data (AGD) are available for the other study. The approach weights outcomes from the IPD using estimates of trial selection odds that balance baseline covariates between the IPD and AGD. With the increasing use of MAIC, there is a need for formal assessments of its statistical properties. In this paper we formulate identification assumptions for causal estimands that justify MAIC estimators. We then examine large sample properties and evaluate strategies for estimating standard errors without the full IPD from both studies. The finite-sample bias of MAIC and the performance of confidence intervals based on different standard error estimators are evaluated through simulations. The method is illustrated through an example comparing placebo arm and natural history outcomes in Duchenne muscular dystrophy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.