2000 character limit reached
Integral Representation for Riemann-Siegel $Z(t)$ function (2406.18968v1)
Published 27 Jun 2024 in math.NT
Abstract: We apply Poisson formula for a strip to give a representation of $Z(t)$ by means of an integral. [F(t)=\int_{-\infty}\infty \frac{h(x)\zeta(4+ix)}{7\cosh\pi\frac{x-t}{7}}\,dx, \qquad Z(t)=\frac{\Re F(t)}{(\frac14+t2){\frac12}(\frac{25}{4}+t2){\frac12}}.] After that we get the estimate [Z(t)=\Bigl(\frac{t}{2\pi}\Bigr){\frac74}\Re\bigl{e{i\vartheta(t)}H(t)\bigr}+O(t{-3/4}),] with [H(t)=\int_{-\infty}\infty\Bigl(\frac{t}{2\pi}\Bigr){ix/2}\frac{\zeta(4+it+ix)}{7\cosh(\pi x/7)}\,dx=\Bigl(\frac{t}{2\pi}\Bigr){-\frac74}\sum_{n=1}\infty \frac{1}{n{\frac12+it}}\frac{2}{1+(\frac{t}{2\pi n2}){-7/2}}.] We explain how the study of this function can lead to information about the zeros of the zeta function on the critical line.