Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integral Representation for Riemann-Siegel $Z(t)$ function (2406.18968v1)

Published 27 Jun 2024 in math.NT

Abstract: We apply Poisson formula for a strip to give a representation of $Z(t)$ by means of an integral. [F(t)=\int_{-\infty}\infty \frac{h(x)\zeta(4+ix)}{7\cosh\pi\frac{x-t}{7}}\,dx, \qquad Z(t)=\frac{\Re F(t)}{(\frac14+t2){\frac12}(\frac{25}{4}+t2){\frac12}}.] After that we get the estimate [Z(t)=\Bigl(\frac{t}{2\pi}\Bigr){\frac74}\Re\bigl{e{i\vartheta(t)}H(t)\bigr}+O(t{-3/4}),] with [H(t)=\int_{-\infty}\infty\Bigl(\frac{t}{2\pi}\Bigr){ix/2}\frac{\zeta(4+it+ix)}{7\cosh(\pi x/7)}\,dx=\Bigl(\frac{t}{2\pi}\Bigr){-\frac74}\sum_{n=1}\infty \frac{1}{n{\frac12+it}}\frac{2}{1+(\frac{t}{2\pi n2}){-7/2}}.] We explain how the study of this function can lead to information about the zeros of the zeta function on the critical line.

Summary

We haven't generated a summary for this paper yet.