All of zeros of Riemann's Zeta-Function are on $σ$=1/2 (1508.02932v8)
Abstract: The research shows that Riemann proved that all of zeros of Riemann's zeta function are on $\sigma=1/2$ based on the functional equation \begin{align*} \pi{-\frac{s}{2}}\Gamma \left( \frac{s}{2} \right) \zeta(s)&={\frac{1}{s(s-1)} + \int\limits_1\infty \psi(x) \left( x{\frac{s}{2} - 1} + x{-\frac{1+s}{2}} \right) \,dx,}\quad\qquad{s}=\sigma+it, \end{align*} which is in Riemann's ``\"{U}ber die Anzahl der Primzahlen unter einer gegebenen Grosse". According to the geometric meaning of the functional equation and the argument principle, we obtain the number of zeros $N_0(T)$ of the Riemann zeta function on the critical segment $\sigma=1/2,0\leq{t}\leq{T}$ and the number of zeros $N(T)$ of the Riemann zeta function in the rectangular region $-1\leq\sigma\leq{2},0\leq{t}\leq{T}$, respectively. The result is \begin{align*} N(T)&=N_0(T)=\frac{\arg{\left[\pi{-\frac{s}{2}}\Gamma\left(\frac{s}{2} \right)\zeta(s)\right]}}{\pi}+1\ &=\frac{T}{2\pi}\log\frac{T}{2\pi}-\frac{T}{2\pi}+O(\log{T}),\qquad{s=1/2+iT}. \end{align*}