Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Complement Face Forensic Detection and Localization with FacialLandmarks (1910.05455v1)

Published 12 Oct 2019 in cs.CV and cs.LG

Abstract: Recently, Generative Adversarial Networks (GANs) and image manipulating methods are becoming more powerful and can produce highly realistic face images beyond human recognition which have raised significant concerns regarding the authenticity of digital media. Although there have been some prior works that tackle face forensic classification problem, it is not trivial to estimate edited locations from classification predictions. In this paper, we propose, to the best of our knowledge, the first rigorous face forensic localization dataset, which consists of genuine, generated, and manipulated face images. In particular, the pristine parts contain face images from CelebA and FFHQ datasets. The fake images are generated from various GANs methods, namely DCGANs, LSGANs, BEGANs, WGAN-GP, ProGANs, and StyleGANs. Lastly, the edited subset is generated from StarGAN and SEFCGAN based on free-form masks. In total, the dataset contains about 1.3 million facial images labelled with corresponding binary masks. Based on the proposed dataset, we demonstrated that explicit adding facial landmarks information in addition to input images improves the performance. In addition, our proposed method consists of two branches and can coherently predict face forensic detection and localization to outperform the previous state-of-the-art techniques on the newly proposed dataset as well as the faceforecsic++ dataset especially on low-quality videos.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Kritaphat Songsri-in (2 papers)
  2. Stefanos Zafeiriou (137 papers)
Citations (29)

Summary

We haven't generated a summary for this paper yet.