Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 98 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 165 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 29 tok/s Pro
2000 character limit reached

Fitting a manifold of large reach to noisy data (1910.05084v4)

Published 11 Oct 2019 in math.ST and stat.TH

Abstract: Let ${\mathcal M}\subset {\mathbb R}n$ be a $C2$-smooth compact submanifold of dimension $d$. Assume that the volume of ${\mathcal M}$ is at most $V$ and the reach (i.e. the normal injectivity radius) of ${\mathcal M}$ is greater than $\tau$. Moreover, let $\mu$ be a probability measure on ${\mathcal M}$ whose density on ${\mathcal M}$ is a strictly positive Lipschitz-smooth function. Let $x_j\in {\mathcal M}$, $j=1,2,\dots,N$ be $N$ independent random samples from distribution $\mu$. Also, let $\xi_j$, $j=1,2,\dots, N$ be independent random samples from a Gaussian random variable in ${\mathbb R}n$ having covariance $\sigma2I$, where $\sigma$ is less than a certain specified function of $d, V$ and $\tau$. We assume that we are given the data points $y_j=x_j+\xi_j,$ $j=1,2,\dots,N$, modelling random points of ${\mathcal M}$ with measurement noise. We develop an algorithm which produces from these data, with high probability, a $d$ dimensional submanifold ${\mathcal M}_o\subset {\mathbb R}n$ whose Hausdorff distance to ${\mathcal M}$ is less than $Cd\sigma2/\tau$ and whose reach is greater than $c{\tau}/d6$ with universal constants $C,c > 0$. The number $N$ of random samples required depends almost linearly on $n$, polynomially on $\sigma{-1}$ and exponentially on $d$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube