Mating of trees for random planar maps and Liouville quantum gravity: a survey (1910.04713v2)
Abstract: We survey the theory and applications of mating-of-trees bijections for random planar maps and their continuum analog: the mating-of-trees theorem of Duplantier, Miller, and Sheffield (2014). The latter theorem gives an encoding of a Liouville quantum gravity (LQG) surface decorated by a Schramm-Loewner evolution (SLE) curve in terms of a pair of correlated linear Brownian motions. We assume minimal familiarity with the theory of SLE and LQG. Mating-of-trees theory enables one to reduce problems about SLE and LQG to problems about Brownian motion and leads to deep rigorous connections between random planar maps and LQG. Applications discussed in this article include scaling limit results for various functionals of decorated random planar maps, estimates for graph distances and random walk on (not necessarily uniform) random planar maps, computations of the Hausdorff dimensions of sets associated with SLE, scaling limit results for random planar maps conformally embedded in the plane, and special symmetries for $\sqrt{8/3}$-LQG which allow one to prove its equivalence with the Brownian map.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.